1.5.1. Ткани, их строение и функции

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани. Это следующий уровень иерархической структуры организма человека – переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества, которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Ткань = клетки + межклеточное вещество
 
  

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами, клетки костной ткани – остеоцитами, печени – гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальнуюсоединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань, или эпителий, покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно – практически без межклеточного вещества – прилегающие друг к другу. Он бывает однослойным или многослойным. Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой – всасывание компонентов пищи и выделение продуктов обмена (экскреция). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio – отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы – железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы, выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани. Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь. В нашем представлении кровь – это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества – плазмы (1) и взвешенных в ней форменных элементов (2) – эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3.

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий.

Различают два основных типа мышечной ткани – гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Нервная ткань (вид К на рисунке 1.5.1) состоит из нервных клеток (нейронов) (1) и межклеточного вещества (2) с различными клеточными элементами (3), называемыми в совокупности нейроглией (от греческого glia – клей). Основным свойством нейронов (нейрон обозначен цифрой 7 на рисунке 1.3.4) является способность воспринимать раздражение, возбуждаться, вырабатывать импульс и передавать его далее по цепи. Они синтезируют и выделяют биологически активные вещества – посредники (медиаторы).

Нервная система регулирует функции всех тканей и органов, объединяет их в единый организм путем передачи информации по всем звеньям и осуществляет связь с окружающей средой.
 
  

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Таблица 1.5.1. Ткани, их строение и функции
Название тканиСпецифические названия клетокМежклеточное веществоГде встречается данная тканьФункцииРисунок
ЭПИТЕЛИАЛЬНЫЕ ТКАНИ
Покровный эпителий (однослойный и многослойный)Клетки (эпителиоциты) плотно прилегают друг к другу, образуя пласты. Клетки мерцательного эпителия имеют реснички, кишечного – ворсинки.Мало, не содержит кровеносных сосудов; базальная мембрана отграничивает эпителий от нижележащей соединительной ткани.Внутренние поверхности всех полых органов (желудка, кишечника, мочевого пузыря, бронхов, сосудов и т.д.), полостей (брюшной, плевральной, суставных), поверхностный слой кожи (эпидермис).Защита от внешних воздействий (эпидермис, мерцательный эпителий), всасывание компонентов пищи (желудочно-кишечный тракт), выведение продуктов обмена (мочевыделительная система); обеспечивает подвижность органов.Рис.1.5.1, вид А
Железистый
эпителий
Гландулоциты содержат секреторные гранулы с биологически активные вещества. Могут располагаться поодиночке или образовывать самостоятельные органы (железы).Межклеточное вещество ткани железы содержит кровеносные, лимфатические сосуды, нервные окончания.Железы внутренней (щитовидная, надпочечники) или внешней (слюнные, потовые) секреции. Клетки могут располагаться поодиночке в покровном эпителии (дыхательная система, желудочно-кишечный тракт).Выработка гормонов (раздел 1.5.2.9), пищеварительных ферментов (желчь, желудочный, кишечный, панкреатический сок и др.), молока, слюны, потовой и слезной жидкости, бронхиального секрета и т.д.Рис. 1.5.10 «Строение кожи» – потовые и сальные железы
Соединительные ткани
Рыхлая соединительнаяКлеточный состав характеризуется большим разнообразием: фибробластыфиброцитымакрофагилимфоциты, единичные адипоциты и др.Большое количество; состоит из аморфного вещества и волокон (эластин, коллаген и др.)Присутствует во всех органах, включая мышцы, окружает кровеносные и лимфатические сосуды, нервы; основная составляющая дермы.Механические (оболочка сосуда, нерва, органа); участие в обмене веществ (трофика), выработке иммунных тел, процессах регенерации.Рис.1.5.1, вид Б
Плотная соединительнаяВолокна преобладают над аморфным веществом.Каркас внутренних органов, твердая мозговая оболочка, надкостница, сухожилия и связки.Механическая, формообразующая, опорная, защитная.Рис.1.5.1, вид В
ЖироваяПочти всю цитоплазму адипоцитов занимает жировая вакуоль.Межклеточного вещества больше, чем клеток.Подкожная жировая клетчатка, околопочечная клетчатка, сальники брюшной полости и т.д.Депонирование жиров; энергетическое обеспечение за счет расщепления жиров; механическая.Рис.1.5.1, вид Г
ХрящеваяХондроцитыхондробласты (от лат. chondron – хрящ)Отличается упругостью, в т. ч. за счет химического состава.Хрящи носа, ушей, гортани; суставные поверхности костей; передние отделы ребер; бронхи, трахея и др.Опорная, защитная, механическая. Участвует в минеральном обмене («отложение солей»). В костях содержится кальций и фосфор (почти 98% от общего количества кальция!).Рис.1.5.1, вид Д
КостнаяОстеобластыостеоцитыостеокласты (от лат. os – кость)Прочность обусловлена минеральным «пропитыванием».Кости скелета; слуховые косточки в барабанной полости (молоточек, наковальня и стремечко)Рис.1.5.1, вид Е
КровьЭритроциты (включая юные формы), лейкоцитылимфоцитытромбоциты и др.Плазма на 90-93% состоит из воды, 7-10% – белки, соли, глюкоза и др.Внутреннее содержимое полостей сердца и сосудов. При нарушении их целостности – кровотечения и кровоизлияния.Газообмен, участие в гуморальной регуляции, обмене веществ, терморегуляции, иммунной защите; свертывание как защитная реакция.Рис.1.5.1, вид Ж; рис.1.5.2
ЛимфаВ основном лимфоцитыПлазма (лимфоплазма)Внутреннее содержимое лимфатической системыУчастие в иммунной защите, обмене веществ и др.Рис. 1.3.4 "Формы клеток"
МЫШЕЧНЫЕ ТКАНИ
Гладкомышечная тканьУпорядоченно расположенные миоциты веретенообразной формыМежклеточного вещества мало; содержит кровеносные и лимфатические сосуды, нервные волокна и окончания.В стенках полых органов (сосудов, желудка, кишечника, мочевого и желчного пузыря и др.)Перистальтика желудочно-кишечного тракта, сокращение мочевого пузыря, поддержание артериального давления за счет тонуса сосудов и т. д.Рис.1.5.1, вид З
Поперечно-полосатаяМышечные волокна могут содержать свыше 100 ядер!Скелетная мускулатура; сердечная мышечная ткань обладает автоматизмом (глава 2.6)Насосная функция сердца; произвольная мышечная активность; участие в теплорегуляции функций органов и систем.Рис.1.5.1 (вид И)
НЕРВНАЯ ТКАНЬ
НервнаяНейроны; клетки нейроглии выполняют вспомогательные функцииНейроглия богата липидами (жирами)Головной и спинной мозг, ганглии (нервные узлы), нервы (нервные пучки, сплетения и т.д.)Восприятие раздражения, выработка и проведение импульса, возбудимость; регуляция функций органов и систем.Рис.1.5.1, вид К

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4.

Дифференцировка – это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток. Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие – это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ – замок” – этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное. Диффузионное – это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio – прилипание, слипание) – механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor – жидкость).

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань – это первые уровни организации живых организмов, но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.

События

Реклама: Общероссийская общественная организация «Российское научное медицинское общество терапевтов», ИНН 7702370661

Реклама: ООО «РЛС-Патент», ИНН 5044031277, erid=4CQwVszH9pWuokPrdWg

Реклама: ИП Вышковский Евгений Геннадьевич, ИНН 770406387105

Реклама: ИП Вышковский Евгений Геннадьевич, ИНН 770406387105

Реклама: ООО «РЛС-Патент», ИНН 5044031277, erid=4CQwVszH9pWuokPrxzh

Наш сайт использует файлы cookie, чтобы улучшить работу сайта, повысить его эффективность и удобство. Продолжая использовать сайт rlsnet.ru, вы соглашаетесь с политикой обработки файлов cookie.